

DESCRIPTION

Sanland' SG106 is a flat gain, high linearity, low noise, 19 dBm Gain Block with good OIP3 achieved through the use of 0.5um GaAs Enhancement-mode PHEMT process.SG106 is designed as low cost drive amplifiers for many applications including FTTH, CATV System.

Major Applications

- ·Low Noise Amplifier for CATV, Satellite
- •Cable Modem
- •FTTH (G-PON, GE-PON)
- Optical node

KEY FEATURES

- Wideband Flat Gain to 1.2GHz\
- · Higher Gain: 19 typ.
- Higher linearity: 30dBm @ 500MHz/5dBm 2tone
- SOT-89 package
- -58dBc CSO 135 Channels @ +15dBmV/ch
- -80dBc CTB 135 Channels @ +15dBmV/ch
- -81dBc XMD 135 Channels @ +15dBmV/ch

ESD Class 1C

Appropriate precautions in handing , packaging testing devices must be observed !

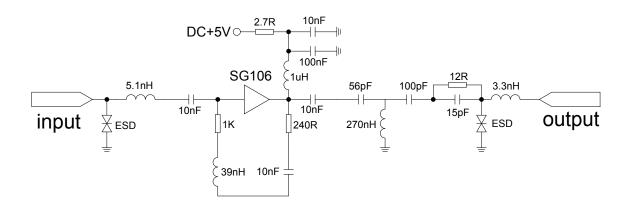
Pin Assignment

Pin	Function	Description
1	RF IN	RF input pin. This pin requires an external DC blocking capacitor.
2	GND	Connecting to ground. Use via holes for best performance to reduce lead inductance.
3	RF OUT / BIAS	RF output and bias pin. DC blocking capacitor is necessary for proper operating.

Rev: 1.1 January 2021 1 of 5

Specifications

PARAMETER	UNIT	MIN	ТҮР	MAX	Condition	
Frequency	MHz	45		1218		
Gain	dB	-	19	-	45MHz ~ 1218MHz	
Gain		-	21	-	30MHz ~ 1000MHz	
Gain Flatness	dB	ı	0.7	- 45MHz ~ 1218MHz		
Input Deturn Loop	40	-	-18	-	45MHz ~ 550MHz	
Input Return Loss			550MHz ~ 1218MHz			
Output Datum Laga	dB	-	-18	-	45MHz ~ 550MHz	
Output Return Loss	αв		550MHz ~ 1218MHz			
Output IP3	3 dBm - 32 - At 500MHz/5dBm		At 500MHz/5dBm			
1dB Compression Point	dBm	-	17	-	At 500MHz	
Noise Figure	dB	-	1.2	2	45MHz ~ 1218MHz	
CSO	dBc	-	-	55	135 channel, +15dBmV/ch	
СТВ	dBc	-	-	75	135 channel, +15dBmV/ch	
XMOD	dBc	-	-	77	135 channel, +15dBmV/ch	
DC Current	mA	-	54	-	Vdd = 5.0V	


Test conditions:Test Freq = 500MHz, T=25°C, Vdd=5V, 75 Ω system

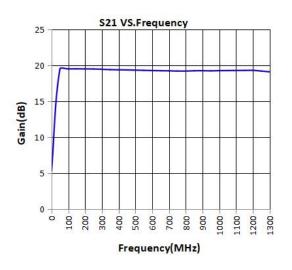
Appication Circuit:45MHz-1218MHz, 75ohm System

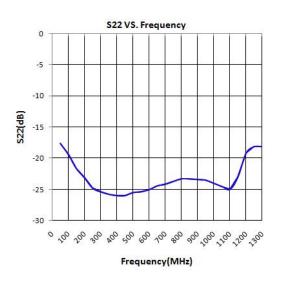
Rev: 1.1 January 2021 2 of 5

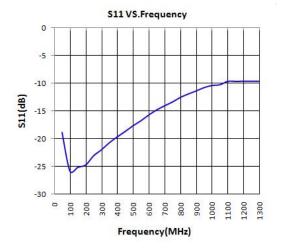
Application Schematic

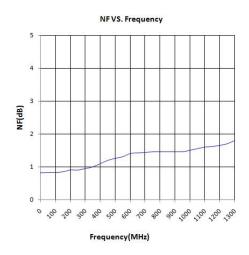
Important Note:

The information provided in this datasheet is deemed to be accurate and reliable only at present time. Sanland Technology Corp. reserves the right to make any changes to the specifications in this datasheet without prior notice.

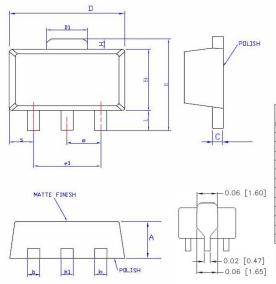

Caution: ESD Sensitive
Appropriate precaution in handling, packaging
And testing devices must be observed.


Rev: 1.1 January 2021 3 of 5

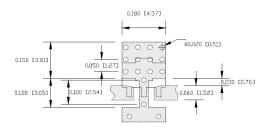



Typical RF Performance

 V_{DD} =5V, I_{DS} =54mA, T=25°C,75ohm System



Rev: 1.1 January 2021 4 of 5


Package DimensionUnits: inch [millimeter]

SYMBOLS	DIMENSIO	NS IN MIL	LIMETERS	DIMENSIONS IN INCHES		
	MIN	NDM	MAX	MIN	NDM	MAX
Α	1.40	1.50	1.60	0.055	0.059	0.063
L	0.89	1.04	1,20	0.0350	0.041	0.047
b	0.36	0.42	0.48	0.014	0.016	0.018
b1	0.41	0.47	0.53	0.016	0.018	0.020
С	0.38	0.40	0.43	0.014	0.015	0.017
D	4.40	4.50	4.60	0.173	0.177	0.181
D1	1.40	1.60	1.75	0,055	0.062	0.069
E	3.94	_	4.25	0.155		0.167
E1	2.40	2,50	2.60	0.094	0.098	0.102
e1	2.90	3.00	3.10	0.114	0.118	0.122
Н	0.35	0.40	0,45	0.014	0.016	0.018
2	0.65	0.75	0.85	0.026	0.030	0.034
6	1,40	1.50	1.60	0.054	0.059	0.063

For informational purpose only and is subject to change without notice

PCB Mounting Information

NOTES:

- 1. Dimensions are in inch [millimeter].
- 2. Use 1 oz. copper minimum for top and bottom layer metal.
- Vias are required under GND(2,4) pin for proper RF/DC grounding and thermal dissipation. Via holes could reduce lead inductance as close to ground as possible.
- Ensure good package backside paddle solder attach for reliable operation and best electrical performance.

Rev: 1.1 January 2021 5 of 5